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Abstract

In an intensive care unit (ICU), an accurate progno-
sis of comatose patients’ recovery is critical for ongoing
medical interventions. Patient prognosis guides decisions
around continuation of care. Patients may recover from
a coma despite poor initial prognosis; thus, more reliable
predictors for recovery are needed. Electroencephalogra-
phy (EEG)-based neurological markers may complement
the current prognosis. The PhysioNet Challenge 2023 in-
cludes a dataset of EEG signals and clinical attributes
from a total of 1020 adult patients in ICUs that remained
in a coma after cardiac arrest, 607 of whom were dedi-
cated to algorithmic training. We conceptualized a novel
time-embedded feature space for continuous EEG followed
by a bidirectional long short-term memory for learning
any temporal patterns associated with comatose patients’
recovery. We extracted EEG-related attributes: dynamic
range, skewness, kurtosis, and subband (δ, θ, α and β)
power after selecting 1 minute/hour EEG using a prepro-
cessing algorithm. With a false positive rate < 0.05, the
true positive rate (TPR) was the scoring metric at the 72nd

hour post cardiac arrest. Our team, USYD BrainBuzz
ranked 27th and achieved scores of 0.26, 0.51 and 0.40
on the training, validation and testing sets, respectively.
Results implicated that our approach has shown promise
for continuous monitoring of comatose patients.

1. Introduction

Electroencephalography (EEG) is a clinical marker for
investigating various neurological conditions, including
predicting comatose patients’ recovery after cardiac arrest
[1, 2]. Expert visual inspection of multi-day EEG sig-
nals is tedious. Results are often subjective, and inaccu-
rate clinical assessment may lead to a catastrophic out-
come. For example, the decision to continue life support
depends on the accurate prognosis, but erroneously with-
drawing life support can cause death [3]. Advances in
signal processing and artificial intelligence algorithms of-
fer an alternative to manual clinical assessment of EEG
signals [4]. Recent studies developed predictive mod-

els based on 1-dimensional convolutional neural network
(1D-CNN), long short-term memory (LSTM) and trans-
former architectures for time-series or sequential data anal-
ysis [5]. Other methods include transforming data se-
quences into images to apply 2D-CNN for feature learn-
ing associated with coma and healthy states [4]. In this
study, we have demonstrated a novel algorithm featur-
ing signal-processing-based EEG feature extraction fol-
lowed by LSTM-based time-embedded sequence analysis
for predicting comatose patients’ recovery.

2. The PhysioNet Challenge 2023

2.1. The Dataset

A group of researchers from the USA and Europe col-
lected the data from seven different hospitals as part of
the International Cardiac Arrest REsearch consortium (I-
CARE) [1,6,7]. The dataset consists of 1020 patients who
were in coma post cardiac arrest. The data were divided
into three subsets: training, validation and testing. All par-
ticipants had access to only the training set (n = 607) to
develop their algorithms. The organizers then evaluated
the submitted algorithms on the validation set, followed by
the final evaluation on a testing set for selecting the com-
petition winners.

Cerebral Performance Category (CPC) was used to clas-
sify the recovery on a scale of 1-5. While scores 1 and
2 refer to good outcomes (good neurological functions to
moderate disabilities), scores 3, 4 and 5 demonstrate poor
recovery (severe neurological disabilities, coma or vege-
tative state to death). For this competition, the aim was
to develop algorithms for predicting good versus poor out-
comes. The number of patients with good and poor out-
comes in the training set was 225 and 382, respectively.

2.2. The Proposed Algorithm

Figure 1 illustrates the clinical environment and the
block diagram of the proposed classification algorithm.
Continuous EEG signals were collected up to several days,
but for the competition we used data up to 72 hours. We
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Figure 1. A schematic illustration of (A) continuous monitoring in an intensive care unit and (B) the block diagram of the
proposed EEG Sequence Learning Algorithm. (Figure created with BioRender.com)

utilized only 9 unipolar EEG to construct 12 bipolar EEG
signals (i.e., F3-C3, C3-P3, Fz-Cz, Cz-Pz, F4-C4, C4-P4,
Fz-F3, Fz-F4, Cz-C3, Cz-C4, Pz-P3 and Pz-P4). The sig-
nals were resampled to a sample frequency Fs = 100 Hz
followed by band pass filtering with corner frequencies 0.5
and 32 Hz. We used a zero-phase Butterworth filter with
an order 4.

2.2.1. Windowing Algorithm and Features

We divided each hour data into 1-minute segments fol-
lowed by calculating 99% power (PW) and correspond-
ing bandwidth (BW) for each segment. For each hour,
the mean values were calculated for BW and PW. The
Euclidian distance between each 1-minute segment’s BW
and PW, and mean BW and PW was then estimated. The
distance metric was averaged over 12 bipolar channels.
The segment with minimum distance was then selected.
Finally, each 1-minute signal was further divided into 5-
second windows for feature extraction.

Dynamic Range: Dynamic range was defined as the dif-
ference between 5th and 95th percentiles.
Skewness and Kurtosis: The skewness and kurtosis mea-
sure higher order statistical properties of a random signal
and are defined as follows, respectively:

s =
E(x− µ)3

σ3
, (1)

k =
E(x− µ)4

σ4
. (2)

Here µ and σ are mean and standard deviation of x, and E
refers to the expected value.
Subband Power: EEG signals were divided into four sub-
bands, i.e., δ (0.5 − 4 Hz), θ (4 − 8 Hz), α (8 − 14 Hz)
and β (14 − 30 Hz). The power of each subband signal
was then calculated as sum of the absolute squares of their
time domain samples divided by the signal length.

We also utilized the clinical information such as age
(in years), sex, time to return of spontaneous circulation
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Table 1. Specifications of the Bidirectional LSTM model.

Layer Type Information
Input Sequence data size 85× 864

Bi-LSTM No. of hidden units 128
Dropout Probability 0.2

Bi-LSTM No. of hidden units 64
Dropout Probability 0.2

Bi-LSTM No. of hidden units 32
Dropout Probability 0.2

Fully-connected No. of neurons 2
Softmax Output

from cardiac arrest, in-hospital or out of hospital cardiac
arrest, targeted temperature (in Celsius). The clinical fea-
tures were normalized to 0 to 1.

2.2.2. Time-Embedded Feature Space

All features were represented with time-embedding. For
any feature, the first 12 values extracted from 5-second
windows for any hour were embedded in chronological
order, resulting a total of 12 × 72 = 864 attributes for
each channel up to 72 hours. There were cases when no
data were available for different hours contributing not a
number (NaN ) values. Data imputation, i.e., NaN values
were replaced with 0 to keep the feature space equal size
for all patients while preserving temporal information.

2.2.3. Sequence Analysis for Classification

We then applied bidirectional LSTM for analyzing
whether the time-embedded feature space depict any
trends for differentiating between good and poor out-
comes. LSTM is a recurrent neural network-based fea-
ture learning algorithm suitable for sequence data analy-
sis. The output of our proposed LSTM model was fed into
a fully-connected layer following classification with a soft-
max layer. Table 1 lists specifications of the bidirectional
LSTM architecture. The LSTM training options are opti-
mizer - Adam, gradient threshold - 1, no of epochs - 250,
learning rate - 0.001, L2 regularization - 0.1, shuffle - ev-
ery epoch and environment - GPU. Dividing the training
set (n = 607) into two subsets, features from only 500
patients (held-out subset of the training set) were used to
train the model, and the remaining data from 107 patients
(training set indices: 201− 307) were used for validation.
The output network was evaluated on the training and un-
seen validation and testing sets.

Table 2. Scores on training, validation and testing sets.
Training Validation Testing

Score 0.26 0.51 0.40

2.3. Computational Resources

We implemented the proposed algorithm in MATLAB
2023a. The codes were then run on a g4dn.4xlarge in-
stance on AWS featuring 16 vCPUs, 64 GB RAM (60 GB
usable), 300 GB of local storage excluding the dataset, and
an optional NVIDIA T4 GPU. For computing with GPU,
we had a limit of 48 hours to train our proposed model
followed by 24 hours for validation.

2.4. Performance Metrics

Assuming that poor outcome and good outcome repre-
sent positive and negative classes, respectively, the true
positive rate (TPR) was calculated at a decision threshold
using the following equation:

TPR =
TP

FP + FN
. (3)

The false positive rate (FPR) was calculated such that

FPR =
FP

FP + TN
< 0.05. (4)

Here, TP , FP , TN and FN are the total number of true
positives, false positives, true negatives and false nega-
tives, respectively.

3. Results and Discussion

We achieved scores of 0.26, 0.51 and 0.40 on the train-
ing, validation and testing sets when constrained to FPR
< 0.05 (Table 2). The performance needs to be improved
before an automated algorithm can be used in a clinical
settings. Figure 2 illustrates time-embedded representa-
tion of dynamics range, skewness , kurtosis and subband
(δ, θ, α and β) powers. Further investigation is essential
if the selected 1-minute data reflect associated physiolog-
ical changes for differentiating comatose condition from
healthy state.

There were missing data posing challenges for feature
representation as input to the proposed sequence learn-
ing model. Imputing missing data streams, i.e., replacing
NaN values with zero may have biased the training of the
proposed algorithm. In some cases, there were only a few
hours of EEG signals available, which seems inadequate
for learning useful temporal patterns as we hypothesized
in our study.

Due to the time constraints of the PhysioNet Challenge
2023, there have been unexplored avenues of the dataset.
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Figure 2. The time-embedded feature representation extracted from bipolar C3-P3 channel for a subject (ID #0553).

For example, supplementary signals like electrocardiogra-
phy (ECG) may offer complementary information to the
proposed time-embedded feature representation. Future
studies may include heart rate variability-related features
extracted from ECG. The proposed time-embeddings of
the EEG-extracted attributes demand further investigation
into whether the sequence learning for predicting comatose
patients’ recovery is suitable in the clinical context. The
training time limit of 48 hours restricted our opportunities
to explore more complex artificial intelligence-based algo-
rithms. A more extensive dataset than only 1 minute/hour
EEG signals may accommodate training a complex model.

4. Conclusion

We ranked 27th and achieved scores of 0.26, 0.51 and
0.40 on the training, validation and testing sets, suggesting
that time-embedded feature representation enables recov-
ery prediction based on EEG alterations over time. Further
studies are needed to evaluate the clinical utility of our pro-
posed algorithm and whether it is adaptable for real-time
continuous monitoring of comatose patients’ recovery.

References

[1] Reyna MA, Amorim E, Sameni R, Weigle J, Elola A,
Bahrami Rad A, Seyedi S, Kwon H, Zheng WL, Ghassemi
M, van Putten, J.A.M. M, Hofmeijer J, Gaspard N, Sivaraju
A, Herman S, Lee JW, Westover MB, Clifford GD. Pre-
dicting neurological recovery from coma after cardiac arrest:
The George B. Moody PhysioNet Challenge 2023. Comput-
ing in Cardiology 2023;50:1–4.

[2] Saha S, Mamun KA, Ahmed K, Mostafa R, Naik GR,
Darvishi S, Khandoker AH, Baumert M. Progress in brain
computer interface: Challenges and opportunities. Frontiers
in Systems Neuroscience 2021;15:578875.

[3] Kondziella D, Amiri M, Othman MH, Jakobsen EW, Jansen
T, Møller K. Understanding, detecting, and stimulating con-
sciousness recovery in the icu. Acta Neurochirurgica 2023;
165(4):809–828.

[4] Zubler F, Tzovara A. Deep learning for eeg-based prognos-
tication after cardiac arrest: from current research to future
clinical applications. Frontiers in Neurology 2023;14.

[5] Hua Y, Zhao Z, Li R, Chen X, Liu Z, Zhang H. Deep learn-
ing with long short-term memory for time series prediction.
IEEE Communications Magazine 2019;57(6):114–119.

[6] Amorim E, Zheng WL, Ghassemi MM, Aghaeeaval M,
Kandhare P, Karukonda V, Lee JW, Herman ST, Sivaraju A,
Gaspard N, Hofmeijer J, van Putten MJ, Sameni R, Reyna
MA, Clifford GD, Westover MB. The international car-
diac arrest research (i-care) consortium electroencephalog-
raphy database. Critical Care Medicine 2023 (in press);
doi:10.1097/CCM.0000000000006074.

[7] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov
PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley
HE. PhysioBank, PhysioToolkit, and PhysioNet: Compo-
nents of a new research resource for complex physiologic
signals. Circulation 2000;101(23):e215–e220.

Address for correspondence:

Simanto Saha
The University of Sydney, NSW 2008, Australia
simanto.saha@ieee.org

Page 4


	Introduction
	The PhysioNet Challenge 2023
	The Dataset
	The Proposed Algorithm
	Windowing Algorithm and Features
	Time-Embedded Feature Space
	Sequence Analysis for Classification

	Computational Resources
	Performance Metrics

	Results and Discussion
	Conclusion

